138 research outputs found

    Quantitative Analysis of Opacity in Cloud Computing Systems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Federated cloud systems increase the reliability and reduce the cost of the computational support. The resulting combination of secure private clouds and less secure public clouds, together with the fact that resources need to be located within different clouds, strongly affects the information flow security of the entire system. In this paper, the clouds as well as entities of a federated cloud system are assigned security levels, and a probabilistic flow sensitive security model for a federated cloud system is proposed. Then the notion of opacity --- a notion capturing the security of information flow --- of a cloud computing systems is introduced, and different variants of quantitative analysis of opacity are presented. As a result, one can track the information flow in a cloud system, and analyze the impact of different resource allocation strategies by quantifying the corresponding opacity characteristics

    Membrane Systems and Petri Net Synthesis

    Full text link
    Automated synthesis from behavioural specifications is an attractive and powerful way of constructing concurrent systems. Here we focus on the problem of synthesising a membrane system from a behavioural specification given in the form of a transition system which specifies the desired state space of the system to be constructed. We demonstrate how a Petri net solution to this problem, based on the notion of region of a transition system, yields a method of automated synthesis of membrane systems from state spaces.Comment: In Proceedings MeCBIC 2012, arXiv:1211.347

    Modeling biological systems with delays in Bio-PEPA

    Full text link
    Delays in biological systems may be used to model events for which the underlying dynamics cannot be precisely observed, or to provide abstraction of some behavior of the system resulting more compact models. In this paper we enrich the stochastic process algebra Bio-PEPA, with the possibility of assigning delays to actions, yielding a new non-Markovian process algebra: Bio-PEPAd. This is a conservative extension meaning that the original syntax of Bio-PEPA is retained and the delay specification which can now be associated with actions may be added to existing Bio-PEPA models. The semantics of the firing of the actions with delays is the delay-as-duration approach, earlier presented in papers on the stochastic simulation of biological systems with delays. These semantics of the algebra are given in the Starting-Terminating style, meaning that the state and the completion of an action are observed as two separate events, as required by delays. Furthermore we outline how to perform stochastic simulation of Bio-PEPAd systems and how to automatically translate a Bio-PEPAd system into a set of Delay Differential Equations, the deterministic framework for modeling of biological systems with delays. We end the paper with two example models of biological systems with delays to illustrate the approach.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005

    Measurable Stochastics for Brane Calculus

    Get PDF
    We give a stochastic extension of the Brane Calculus, along the lines of recent work by Cardelli and Mardare. In this presentation, the semantics of a Brane process is a measure of the stochastic distribution of possible derivations. To this end, we first introduce a labelled transition system for Brane Calculus, proving its adequacy w.r.t. the usual reduction semantics. Then, brane systems are presented as Markov processes over the measurable space generated by terms up-to syntactic congruence, and where the measures are indexed by the actions of this new LTS. Finally, we provide a SOS presentation of this stochastic semantics, which is compositional and syntax-driven.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005

    Modelling and Analysis of Corporate Efficiency and Productivity Loss Associated with Enterprise Information Security Technologies

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.By providing effective access control mechanisms, enterprise information security technologies have been proven successful in protecting the sensitive information in business organizations. However, such security mechanisms typically reduce the work productivity of the staff, by making them spend time working on non-project related tasks. Therefore, organizations have to invest a signification amount of capital in the information security technologies, and then to continue incurring additional costs. In this study, we investigate the non-productive time (NPT) in an organization, resulting from the implementation of information security technologies. An approximate analytical solution is discussed first, and the loss of staff member productivity is quantified using non-productive time. Stochastic Petri nets are then used to provide simulation results. Moreover, sensitivity analysis is applied to develop a cost-effective strategy for mitigating the negative impact of implementing information security technologies. The presented study can help information security managers to make investment decisions, and to take actions toward reducing the cost of information security technologies, so that a balance is kept between information security expense, resource drain and effectiveness of security technologies

    An Abstraction Theory for Qualitative Models of Biological Systems

    Full text link
    Multi-valued network models are an important qualitative modelling approach used widely by the biological community. In this paper we consider developing an abstraction theory for multi-valued network models that allows the state space of a model to be reduced while preserving key properties of the model. This is important as it aids the analysis and comparison of multi-valued networks and in particular, helps address the well-known problem of state space explosion associated with such analysis. We also consider developing techniques for efficiently identifying abstractions and so provide a basis for the automation of this task. We illustrate the theory and techniques developed by investigating the identification of abstractions for two published MVN models of the lysis-lysogeny switch in the bacteriophage lambda.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005

    Slimming down Petri Boxes: Compact Petri Net Models of Control Flows

    Get PDF
    We look at the construction of compact Petri net models corresponding to process algebra expressions supporting sequential, choice, and parallel compositions. If "silent" transitions are disallowed, a construction based on Cartesian product is traditionally used to construct places in the target Petri net, resulting in an exponential explosion in the net size. We demonstrate that this exponential explosion can be avoided, by developing a link between this construction problem and the problem of finding an edge clique cover of a graph that is guaranteed to be complement-reducible (i.e., a cograph). It turns out that the exponential number of places created by the Cartesian product construction can be reduced down to polynomial (quadratic) even in the worst case, and to logarithmic in the best (non-degraded) case. As these results affect the "core" modelling techniques based on Petri nets, eliminating a source of an exponential explosion, we hope they will have applications in Petri net modelling and translations of various formalisms to Petri nets

    Avoiding Shared Clocks in Networks of Timed Automata

    Full text link
    • …
    corecore